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Abstract. Completely integrable Hamiltonians submitted to a smooth perturbation are considered
in the high-energy limit. It is shown that certain perturbation series, when suitably truncated, keep
their validity even if the perturbation amplitude is much larger then the distance between levels.
This is related to the localization of the corresponding eigenfunctions in the space of quantum
numbers; such eigenstates are robust against level crossing. They are the natural analogues of
classical KAM tori. Moreover, the method can also be used in classically resonant regions.

1. Introduction

The theorem of Kolmogorov, Arnol’d and Moser (KAM) [2, 6, 11] was an unexpected
achievement in classical mechanics because simple perturbative methods do not allow one
to predict the motion of a system slightly departing from integrability. This problem of ‘small
divisors’ finds its origin in the existence of stochastic trajectories in the perturbed system. Such
trajectories exist, however small the perturbation is, so that there is always a dense region in
phase space which cannot be described by perturbative methods of any kind.

The situation is quite different in quantum mechanics, since conventional perturbation
theory can always be used if the perturbation is small enough†; in this sense there is no need
for an improved perturbation scheme, like Newton’s method in KAM theory. On the other hand,
perturbation series cease to converge when the distance between energy levels becomes smaller
than the amplitude of the perturbation; now the spacing between levels usually decreases
as some inverse power of the energy, which leads to the somewhat paradoxical situation
that perturbation theory fails when the perturbation is comparatively the smallest. However,
this new problem of small divisors, of a purely quantum origin‡, should not preclude us
from applying the correspondence principle to the perturbed Hamiltonian. According to this
principle, and by virtue of KAM theory, it should be possible to describe a large fraction of the
perturbed eigenstates by conventional perturbative methods. Equivalently, most eigenstates
should remain localized in the lattice of quantum numbers; superposition of several states of
this kind would occur only if their energies differ by an amount smaller than their coupling,
which is exponentially small.

Of course, there should also exist eigenstates which are more sensitive to the perturbation.
However, unlike classical resonant tori, these states should not manifest their ‘resonant’
character when the perturbation is infinitesimal; this is in accordance with the intuitive idea
that quantum eigenstates represent a finite volume of classical phase space.

† In quantum mechanics, the effect of classical resonances is strongly attenuated by the curvature of the energy
surface.
‡ Superposition of states close in energy can be interpreted as a consequence of the tunnel effect.
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One is therefore led to the conjecture that, for a given perturbation of arbitrary (but
sufficiently large) amplitude, two distinct class of eigenstates manifest themselves as the energy
is increased: the first and broader class contains eigenstates that are increasingly localized
around some point in the lattice of quantum numbers. The second class, by analogy with the
classical resonant zones, escapes from perturbative methods at all energies.

A natural approach to this problem consists in constructing semi-classical wavefunctions
from quantized KAM tori [4,8,9]. Arnol’d [3] called such wavefunctions quasi-modes, because
they do not always approximate a true eigenstate. These functions indeed satisfy the stationary
Schrodinger equation up to an error ε proportional to some power of h̄ (depending on the order
of the semi-classical approximation); they may therefore represent a superposition of several
eigenstates whose energies lie within an interval of width ε.

In the present work, however, we shall focus on the quantum perturbation problem,
avoiding both the intricacies of the semi-classical quantization method and KAM perturbation
techniques. An elementary method of truncation of the perturbation series is presented,
yielding quasi-modes with an error decreasing exponentially with the energy. At high energies
this error is much smaller than the average distance between levels, so that most quasi-modes
are close to the actual eigenstates. Moreover, this method extends to the most common class
of resonance. In some cases it can therefore be used to completely describe the perturbed
spectrum.

Our approach is based upon the study of localization properties of eigenstates in the lattice
of quantum numbers; this point of view was inspired by the work of Altshuler and Levitov [1]
on the scattering of a free particle by a singular periodic potential (the attention of these authors
is drawn towards critical states). The spectacular failure of perturbation theory for energy levels
corresponding to resonant tori, observed by Kunz and Rezakhanlou in the case of magnetic
billards [13], served also as a motivation for this work. In particular, Kunz [7] suggested to
look for an analogue of KAM theory in quantum mechanics in the form of a global perturbation
theory. Finally, we mention the paper of Percival [12] in which the existence of a regular and
an irregular spectrum is conjectured for mixed systems at high energies, on the basis of the
correspondence principle.

After this work was completed, the results of Feldman et al [5] were brought to my
knowledge; these authors studied in detail the Bloch spectrum of a particle on a two- or three-
dimensional periodic potential. They proved the existence of a stable and an unstable spectrum,
the former consisting of pairs of levels that do not cross any other level under the effect of the
perturbation. For generic periods of the potential, the stable spectrum is a subset of the density
one; in other words, the problem of small divisors affects only a small part of the spectrum.
This remarkable result depends on the dimension of the system and the symmetry of the matrix
elements of the perturbation. In a sense, the robust and resonant spectra defined in this paper
generalize their analysis to cases where small divisors cannot be avoided.

2. Smooth perturbations of quantum integrable systems

2.1. Definitions

As explained in the introduction, the aim of this paper is to investigate the properties at high
energies of an integrable Hamiltonian submitted to a smooth perturbation. This sentence can be
given a precise meaning in classical mechanics, but this is not so easy in quantum mechanics;
our approach is therefore based on the examination of a few motivating examples (see section 4),
from which generic features can be recognized. Rather than starting with examples, we shall,
however, try to formulate our definitions and results in a general form and then come back to
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examples. It should therefore be emphasized that the following definitions only synthesize the
main properties of the examples; they are by no means an attempt to characterize all quantum
integrable systems, for which no equivalent of the Liouville–Arnol’d theorem is known.

The quantum systems we have in mind in this paper consist in a single, spinless particle
submitted to some external field, so that the corresponding classical system is unambiguously
defined and consists in an integrable part plus some perturbation.

Our object of study is thus an Hamiltonian H = H0 + V with discrete spectrum, where
H0 is integrable and V is a smooth perturbation. We shall explain now what we mean by this.

Let ν be the dimension of the configuration space; H0 is an integrable Hamiltonian of
dimension ν if there exists a complete set of compatible observables A2, . . . , Aν with discrete
spectrum, such that [Ai,Aj ] = 0, [Ai,H0] = 0. Now such a definition is not very helpful,
since the lack of a quantum Liouville–Arnol’d theorem leaves us without powerful tools such
as invariant tori and action-angle coordinates. We must therefore fill this gap with a set of
minimal assumptions, that seem reasonable when concrete examples are considered. The
description of integrable systems we shall adopt is based on the notion of a lattice of quantum
numbers: the smoothness of the perturbation will be defined with respect to this lattice. But
since the existence and properties of this lattice are guaranteed by no theorem, one must be
flexible when trying to characterize it; the right attitude would be to construct explicitly such
a lattice for a given Hamiltonian (it is not unique in general) and then check that it has the
good properties. This may be a hard task in many cases†; note however that the difficulty to
construct and analyse explicit integrable Hamiltonians exists in classical mechanics as well.

We now explain what the lattice of quantum numbers is. The eigenstates of H0 can
be labelled in a variety of ways; for instance, if the integer ni labels the eigenvalues
· · · < λni

< λni+1 < · · · of Ai , i = 2, . . . , ν, and n1 labels the energy levels in each
subspace defined by a fixed value of n2, . . . , nν , then n = (n1, . . . , nν) labels the eigenstates
of H0 (assuming there are no further degeneracies). Let � ⊂ Zν be the union of all vectors
n; we call � the lattice of quantum numbers defined by H0. We immediately note that this
definition is not always optimal; for instance if p1, p2 are two commuting operators with
discrete spectrum and H0 = p2

1 + p2
2, it is simpler (because of degeneracies) to use directly

the eigenvalues of p1, p2 rather than the construction above. Finding the good definition of
� therefore depends on the explicit form of H0; in what follows we shall assume that � has
been chosen so that n bears some resemblance to a vector of quantized actions defined by the
corresponding classical Hamiltonian H cl

0 . In this case the matrix elements of a perturbation
V can be interpreted, in the semi-classical limit, as Fourier coefficients of V cl(I, θ), where
(I, θ) are the action-angle variables defined by H cl

0 (I). For technical convenience, we shall
also assume that the volume of the unit cell in �, as well as the norm of the shortest vector in
the lattice, is >1.

In classical mechanics, KAM theorem applies only if the perturbation V cl is a smooth
function of (I, θ). From a quantum standpoint, it is reasonable to define a smooth perturba-
tion V as an operator whose matrix elements decrease exponentially with the distance between
lattice points in �. More precisely, we assume the existence of two positive functions Ṽ0(n),
α̃(n) such that for all n,m ∈ �

|〈n|V |m〉| � Ṽ0(n)e−α̃(n)|n−m| (1)

(we use Dirac’s bra-ket notation for states and scalar products throughout the paper). The im-
portant point is that the lattice� allows for the definition of a distance between eigenstates ofH0

(the Euclidean distance in Rν); this distance leads in turn to the notion of a smooth perturbation.

† For example, the study of a particle in a disc involves a deep understanding of the asymptotic behaviour of Bessel
functions.
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The lattice � must possess another important property: the energy En = 〈n|H0|n〉 must
depend smoothly on n (at least for large quantum numbers). By this we mean that it must
be possible to expand En+k in a Taylor series in terms of k, so that the first few terms give
an accurate approximation for substantially large k. This requirement is essential for defining
robust states and resonant gaps (see next section). Again, only explicit examples can tell to
what extent this requirement is fulfilled. Simple counter-examples can be found if, for instance,
the dimension of � is smaller than ν.

We conclude this section by defining some auxiliary functions that will be used throughout
this paper. Observe that in many cases � is not truly a lattice, i.e., � is only a subset of the
‘full’ lattice �c generated by all vectors n. The following functions depend only on �c and
on the variable α:

C1(α) =
∑
n∈�c

e−α|n| (2)

C2(α) =
∑
n∈�c

e− 1
2 α

√|n| (3)

C3(α) = max
m �=0

( ∑
j�0

∑
n∈�c,n·m�0

e−α|jm−n|
)

(4)

C4(α) = max
r�0

(
eαr/2

∑
|n|�r

e−α|n|
)

(5)

C5(α) =
(

12(2ν + 4)

αe

)2ν+4

. (6)

Notice that all these functions are bounded from above by some power of α.

2.2. Resonant gaps and robust states

The basic technique we shall use to avoid small divisors is to restrict the perturbation series
to a finite region of the lattice of quantum numbers. The smoothness of the perturbation will
then imply that the perturbative state is exponentially localized in this region: this is enough
to insure that the approximation is accurate. We therefore now examine the local properties
of the lattice �.

Suppose that we are given two functions of the quantum numbers R̃(n), δ̃1(n) (typically
increasing as some power of the energy) with the following property: for all n′ such that
|n′ − n| < R̃(n), R̃(n) < 2R̃(n′). For any couple {m,−m} ⊂ �, we define a resonant gap
Gm

Gm = {n ∈ � : m � 4R̃(n) and min
k=±1

|En+km − En| < 2δ̃1(n)}. (7)

We say that n is a robust state if the ball

BR̃ = {n′ ∈ � : |n − n′| < R̃(n)} (8)

has an empty intersection with all resonant gaps. These definitions correspond qualitatively
to their classical analogues: a quantum resonant gap Gm is created when two lattice points n,
n + m are almost tangent to the energy surface, so that m · ∂nE ∼ 0. If we interpret quantum
numbers as quantized classical actions, this tangency condition exactly corresponds to the
resonance condition for classical tori. In this analogy, robust states correspond to quantized
KAM tori. Moreover, since |∂nE| usually grows as some power of E, resonant gaps (when
suitably defined) fill only a small fraction of the space of quantum numbers. This fact, which
rests on the assumption that En is a smooth function of n, is at the basis of the present work.
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Since most difficulties in the analysis are related to resonant gaps, it is necessary to describe
their structure in more detail. Let m be a primitive vector in the lattice; it is convenient to
define a maximal resonant gap as

Ḡm =
⋃
j∈Z

Gjm. (9)

Now consider a subset ! of the maximal gap Ḡm, of diameter smaller than R̃, having an
empty intersection with all other resonant gaps. In this region, the local structure of � can
be described as the product of a one-dimensional ‘resonant’ lattice and a (ν − 1)-dimensional
‘robust quasi-lattice’†. More precisely, we can define resonant chains

Cn = {s ∈ ! : s = n + jm, j integer} (10)

and write

! =
⋃

n∈!0

Cn (11)

where !0 is a set defined so that two points in !0 never belong to the same chain; we call n

the centre of the chain and m the resonant vector. Since all chains in ! intersect no other
gap than Ḡm, their spectra do not overlap; more precisely, the distance between two levels
belonging to different chains is >2δ̃1.

Chains can be continued until they reach robust points. In the following, the centre will
be defined as the point of minimal energy in the chain (assuming that the energy surface is
convex). For each resonant chain Cn, we also define a function κn(x) as follows: if |jm| > x

then |En,j − En,j−1| > κn(x), where En,j = En+jm.
The analysis of resonant gaps is simplified if we take into account the following fact: if

the curvature of the energy surface varies sufficiently slowly, then the spectrum of a resonant
chain is close to the spectrum of a free particle on a circle. This lead us to make the following
hypothesis about H0 (assumed to be valid throughout sections 3.3 and 3.4).

Curvature assumptions. Let E0, J be two constants depending on the integrable Hamiltonian
H0 only. For any chain Cn of resonant vector m such that En > E0, the following conditions
hold:

(1) If j > J and j > j ′ > 0 (or j < −J and j < j ′ < 0) then En,j − En,j ′ > 0.
(2) If j > J and j ′ < 0 then |En,j − En,j ′ | is minimal when |j + j ′| � 1.
(3) If |j | > J , then |En,j − En| < 2|j |κn(m(|j | − 2)).

These assumptions are related to the almost constancy of the curvature through the following
argument: if we expand the energy En+jm = En,j in a Taylor series, discarding terms of third
and higher order, we have

En,j = En + jm · ∂nE + 1
2j

2mt · ∂2
nE · m + · · · . (12)

Since n is the centre of the chain, the energy surface is almost tangent to m at n; geometrical
arguments show indeed that there is usually a lattice point n such that

|∂nE · m| � m2

2ρ
|∂nE| (13)

† This decomposition can be thought of as a quantum counterpart to the foliation of the classical resonant torus by a
one-parameter family of invariant tori.
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where ρ is the radius of curvature of the curve defined as the intersection of the energy surface
with the plane spanned by ∂nE and m. On the other hand, if ∂nE · m = 0 then

mt · ∂2
nE · m = |∂nE|m

2

ρ
(14)

so that usually

|m · ∂nE| < 1
2mt · ∂2

nE · m. (15)

Since the quadratic term is always dominant, the spacing between levels in the chain increases
(linearly) with |j |. Actually, two levels can be close to each other, but they correspond in this
case to nearly opposite sites (for instance j and −j ).

3. Quasi-modes

The simplest strategy to avoid small divisors in the perturbation series is to eliminate the
corresponding terms by a suitable truncation; the resulting approximation is accurate enough
if it satisfies the stationary Schrodinger equation up to an error much smaller than the average
distance between levels (quasi-mode). The description of integrable systems sketched in
the previous section suggests that such an approximation can be obtained by considering a
finite region in the lattice of quantum numbers and diagonalizing the corresponding (finite
dimensional) Hamiltonian; the accuracy of the resulting approximation is then directly related
to its localization in the lattice.

This section is organized as follows: we first give a precise definition of quasi-modes
and then explain why they provide really accurate approximations of the true eigenstates.
Then we construct quasi-modes in the simplest case, i.e. quasi-modes localized around robust
lattice points; the corresponding exact states are the natural analogues of KAM tori in classical
mechanics. Finally, we apply the same method to single resonances: the construction is not
limited to the neighbourhood of robust points, but it ultimately depends on the localization of
the approximation.

The localization lemma given in the appendix is the main technical tool used in this section.

3.1. Definition and properties

Consider an integrable Hamiltonian H0 of dimension ν and a smooth perturbation V . Let Br

be a ball of radius r in the lattice � of quantum numbers; we write Hr , Vr the restrictions of
H = H0 + V , V to the subspace spannned by states in Br and we define

α = min
s∈Br

α̃(s) (16)

V0 = max
s∈Br

Ṽ0(s). (17)

We say that |q〉 is a quasi-mode of the HamiltonianH = H0 +V if |q〉 is a normalized eigenstate
of Hr and if there exists a function C0(α), bounded from above by some power of α, such that
for any n ∈ �, n /∈ Br

|〈q|V |n〉| � C0V0 exp

(
−α

(√
r

8
+ dn

))
(18)

where dn = dist(n, Br).
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Quasi-modes have the following simple property:

|(H − Hr)|q〉|2 =
∣∣∣∣ ∑

n/∈Br

|n〉〈n|V |q〉
∣∣∣∣
2

� C2
0V

2
0 e−α

√
r/4

∑
n/∈Br

e−2αdn

� constant × C2
0V

2
0

rν−1

α

(
1 + O

(
1

αr

))
e−α

√
r/4

= ε(V0, α, r) (19)

therefore, if Hr |q〉 = Eq |q〉
|(H − Eq)|q〉|2 � ε. (20)

Thus if ε is small, quasi-modes are almost solutions of the stationary Schrodinger equation.
Our definition of quasi-modes is indeed meaningful if α

√
r grows as some power of the energy:

in this case ε decreases exponentially with some power of E.
The usual definition of quasi-modes [4,8,9] is based upon semi-classical approximations

and yields an error ε proportional to some power of h̄. In our case, the interesting point is the
exponential decrease of ε: if ε1/4 becomes much smaller than the average distance between
energy levels, then most quasi-modes can be considered as very good approximations of the
exact eigenstates†. Let Eq be the quasi-energy associated with a quasi-mode q; let us write
|λ〉 the exact eigenstates of H , with eigenvalues Eλ. We can expand

|q〉 =
∑
λ

cλ|λ〉. (21)

But we have seen that

|(Eq − H)|q〉|2 =
∑
λ

|cλ|2|Eq − Eλ|2 � ε (22)

so that

ε �
∑

|Eq−Eλ|2�√
ε

|cλ|2|Eq − Eλ|2

�
√
ε

∑
|Eq−Eλ|2�√

ε

|cλ|2 = √
ε|q − qε |2 (23)

where qε is the projection of q on the subspace |Eλ − Eq |2 <
√
ε. We have thus proved

that |q − qε |2 � √
ε, |qε |2 � 1 − √

ε. In particular, there exists an eigenvalue Eλ such that
|Eλ −Eq | < ε1/4 and if it is unique, then |qε〉 ∝ |λ〉. If there are several such eigenvalues, then
of course the quasi-mode does not necessarily represent an eigenstate, but a linear superposition
of almost degenerate eigenstates.

It is interesting to consider quasi-modes in a continuous range of perturbation amplitudes
0 � V0 � V̄0: it is only when the quasi-energy Eq belongs to a cluster of exponentially
close eigenvalues that the quasi-mode q represents a mixing of the corresponding eigenstates;
otherwise, q itself is (with exponential accuracy) an eigenstate. Now the formation of such
clusters (for a given eigenvalue) occurs only at certain values ofV0. Moreover, quasi-modes and
quasi-energies keep their identity before and after this ‘collision’ of levels. In other words, this

† It is assumed in our reasoning that the level spacing distribution of the perturbed system is smooth. This distribution
is unsmooth, for instance, for a free particle in a square box; it would be interesting to know if such large degeneracies
can also occur in mixed systems.
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Figure 1. Robustness of quasi-modes against level crossing.

approximation method can be applied well beyond the range of validity of usual perturbation
theory, namely before and after the crossing of levels†.

Of course, this raises the question of the significance of quasi-modes under an adiabatic
change of V0. We start with V0 = 0 and slowly increase the amplitude V0. The initial state of
the system is the eigenstate |n〉. Assume that the timescale T of the adiabatic change satisfies
1/*E � T � 1/ε, where *E is the average distance between levels and ε is roughly
proportional to the coupling between quasi-modes. As we shall see in the next section, a
quasi-mode |q〉 can often be associated to an eigenstate |n〉 of H0; standard arguments imply
then that the adiabatic evolution of |n〉 is given by the corresponding quasi-mode |q〉. This
is indeed obvious as long as the corresponding quasi-level Eq meets no other energy level
(because 1/*E � T ); on the other hand, if Eq meets some other level, the system ‘jumps’
to stay on Eq (see figure 1): this is because the time T is much smaller than the coupling 1/ε
(recall that remaining continuously on the same level would imply a complete change of the
physical state at every ‘avoided crossing’). The quantum number n can therefore be used to
label eigenstates even if many level crossings have already occurred.

3.2. KAM quasi-modes

These are the simplest quasi-modes to construct: it suffices to exploit the properties of robust
states. Recall that n ∈ � is a robust state if it is possible to construct a ball BR̃ of radius R̃(n)

and centre n which does not intersect any resonant gap. Define

δ1 = min
a∈BR̃

δ̃1(a). (24)

If a, b ∈ BR̃ , then |a − b| < 2R̃(n) < 4R̃(a) so that |Ea − Eb| > 2δ1. In particular, there
is a gap 2δ1 between En and any other level of H0 in BR̃ . If Ṽ0 � δ1, one can therefore
conclude from perturbation theory that the eigenstates of HR̃ (restriction of H to the ball BR̃)
are exponentially localized around some lattice point; if this lattice point lies in the centre of
BR̃ , then the eigenstate is a quasi-mode.

The following theorem is a direct corollary of lemma 7 (where C4(α) has been replaced
by 1) and lemma 8 in the appendix.

† Strictly speaking, levels do not generically cross (unless they are completely decoupled) but a new set of eigenstates
temporarily forms, which removes the degeneracy.
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Theorem 1. Consider a ball BR in the lattice � of radius R and centre n, and define

α = min(log 4, min
s∈BR

α̃(s)) (25)

V0 = max
s∈BR

Ṽ0(s). (26)

Assume that for all s, s′ ∈ BR , |Es − Es′ | � 2δ � 8C1(α)V0. Then to each s ∈ BR

corresponds an eigenstate |x〉 of HR (restriction of H to BR) exponentially localized around
s: for all t ∈ BR

|〈x|t〉| � 13V0

δ
e−α/2

√|t−s|. (27)

Moreover,

Es − C1V0 � Ex � Es + C1V0. (28)

In particular, the eigenstate |q〉 localized around n is a quasi-mode: for all m /∈ BR

|〈q|V |m〉| � V0C5

(
1 +

4

C1

)
e−α(dm+1/8

√
R) (29)

where dm = dist(m, BR).

We call |q〉 a KAM quasi-mode. It is worthy of note that the above estimates are obtained

with perturbative methods only†. If most lattice points are robust and α̃
√
R̃ grows as some

power of the energy, then this result is in a sense equivalent to KAM theorem: according to the
foregoing discussion, most quasi-modes can be seen as accurate approximations of the exact
modes, so that a large fraction of the perturbed eigenstates can be obtained with perturbative
methods. Moreover, the corresponding quantum numbers keep their significance, quite like
invariant tori in the classical system. We refer to section 4 for a more complete discussion of
KAM quasi-modes through concrete examples.

We stress here that the name KAM quasi-mode is not meant to imply any sophisticated
perturbative technique (only standard Rayleigh–Schrodinger theory is used in the present
work). In quantum mechanics indeed, the positiveness of the convergence radius of the
perturbation series has nothing to do with integrability; discreteness of the spectrum and
smallness of the perturbation are the important ingredients. Genuine quantum small divisors
come from global resonances, whereas the small divisors of KAM theory are related to local
tangency of the energy surface with the lattice of quantum numbers; this problem disappears
as soon as robust points are considered, whence the name of the corresponding quasi-modes.

3.3. Quasi-modes in single resonant gaps

Suppose that the functions R̃(n), δ̃1(n) defined in 2.2 are such that, above a certain energy,
resonant gaps fill only a small fraction of the space of quantum numbers. Then the
intersections of two or more gaps (with linearly independant resonant vectors) are included in
the neighbourhood of sets of codimension 2 and it is natural to consider a region intersected
by one maximal gap only. The aim of this section is to demonstrate how quasi-modes can be
constructed in such a region; unlike their KAM analogues, however, these quasi-modes cannot
be computed by treating V as a perturbation.

Let Br be a ball of radius r in the lattice �, intersected by one maximal gap Ḡm only. As
explained in 2.2, in such a ball the lattice can be described as a family of resonant chains whose

† There is a non-perturbative step in the application of lemma 7, namely the diagonalization of the Hamiltonian H1;
however, this step is trivial in our case.
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spectra do not overlap. The exact spectrum of a chain depends of course on the integrable
system under consideration; however, the curvature assumptions of section 2.2 imply that the
distance between levels generally increases with the distance to the centre of the chain. These
characteristics of the spectrum are the key to the construction of quasi-modes. The smooth
perturbation V leads to the appearance of eigenstates delocalized in the centre of the chain;
however, this delocalization is limited by the increasing distance between levels in the chain:
when two neighbouring points become separated by an energy gap of the order of Ṽ0, states
become localized.

We consider an integer j0 > J and a ball Br = {v ∈ � : |v − n0| < r} where the point
n0 is the centre of a resonant chain Cn0 and En0 > E0. We define

δ1 = min
v∈Br

δ̃1(v) (30)

and we assume thatBr intersects only one maximal resonant gap Ḡm, with 2j0m < r < R̃(n0);
consequently, inside of Br , |En,j − En′,j ′ | � 2δ1 if n �= n′. In the following we set En0 = 0
and

δ2 = 5
21κn0((j0 − 2)m). (31)

Typically δ2 � δ1; here we shall simply assume δ2 < δ1/2.

Proposition 2. There exist

j0 − 2 � j+ � j0 + 2 − j0 − 2 � j− � −j0 + 2

and * > 0 such that:

(1) If j ∈ [j−, j+] then En0,j ∈ [0,*].
(2) If j /∈ [j−, j+] then En0,j � * + 21δ2/10.

Moreover, if En0,j � En0,k � En0,l are three consecutive levels of Cn0 and En0,j /∈ [0,*],
then max(En0,k − En0,j , En0,l − En0,k) � 21δ2/10.

Proof. Consider En0,j0 . According to the curvature assumptions of 2.2, the closest level En0,j

to En0,j0 , j < 0, is En0,−j0+ε and ε ∈ {0, 1,−1}. Suppose that En0,−j0+ε � En0,j0 ; then
En0,−j0+ε−1 > En0,j0 + 21δ2/10, so that we can choose j+ = j0, j− = −j0 + ε, * = En0,j+.
Similarly if En0,−j0+ε � En0,j0 , then j− = −j0 + ε + 1, j+ = j0 − 1, * = En0,j−.

Suppose now that max(En0,k − En0,j , En0,l − En0,k) � 21δ2/10. Then by definition of
δ2, jk < 0 and kl < 0. Therefore j and l have the same sign; but En0,l − En0,j < 21δ2/5,
which is a contradiction. This completes the proof. �

We give now localization conditions insuring that the eigenfunctions of the Hamiltonian
H , restricted to a ball Br in the lattice, are exponentially localized in Br . The subsequent
propositions are devoted to the proof of this fact; as we have explained, this proof rests entirely
on the existence of large gaps in the spectrum of H0 restricted to Br . Let us define

V0 = max
s∈Br

Ṽ0(s) (32)

α = min(log 4,min
s∈Br

α̃(s)). (33)

In what remains of this section, the argument of the functions C1, . . . , C5 always takes the
above value of α.
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Localization conditions:

δ2

V0
> max(20C1, 10C3, 60C2) (34)

δ1

V0
> 10C1(2r + 2)ν/2 (35)

r

2m
> (2j0 + 5)

(
2 +

1

αm
+

1

α2m2

)
. (36)

We shall now demonstrate that the above conditions imply the existence of quasi-modes.
We want to diagonalize the Hamiltonian Hr (restriction of H to Br ); observe that, by the
Gerschgorin theorem, the levels of H0 are shifted by an amount less than C1V0 < δ2/20,
so that many characteristics of the spectrum remain almost unchanged. In particular, there
remains a gap 2δ2 around the enlarged interval

b = [−δ2/20,* + δ2/20] (37)

and there are exactly j+ − j− + 1 levels of Hr in b. Moreover, there remain gaps of width 3δ1/2
between the spectra of different chains, so that it is still meaningful to say that an eigenstate
of Hr belongs to a chain Cn.

Proposition 3. Let Hr be the restriction of the Hamiltonian H to the ball Br , and assume
that the first localization condition is satisfied (condition (34)). Let |x〉 be an eigenstate of
Hr belonging to Cn0 , but not to the energy interval b. Then |x〉 is exponentially localized
around one or two lattice points s, s′ ∈ Cn0 . More precisely, s = n0 + jm, s′ = n0 + j ′m,
j, j ′ /∈ [j−, j+], |j + j ′| � 1 and

|〈x|t〉|2 � 7

C2
1

exp(−α
√
rt) (38)

where t is any lattice point in Br and rt = dist ({s, s′}, t).

Proof. It suffices to apply the localization lemma given in the appendix. By proposition 2
and the Gerschgorin theorem the state |x〉 can be associated with one or two lattice points
s, s′ ∈ Cn0 such that |Es − Es′ | � 21δ2/10. We identify the subspaces A and B of lemma 7
with {s, s′} and Br respectively (we refer to the appendix for subsequent notations in this
proof). The energy levels of H1 corresponding to the subspace A lie in an interval a of width
w1 � 22δ2/10, separated by a gap 2w2 = 2δ2 from all other levels of H1 (proposition 2). It is
straightforward to verify that all conditions of the lemma are satisfied and that the contour γ
surrounds Ex . Moreover, we can replace C4 by 2. This completes the proof. �

Proposition 4. Let |z〉 be an eigenstate of Hr belonging to the energy interval b, and assume
that the localization conditions are satisfied. Then |z〉 is exponentially localized in the ball
Br/2. More precisely, for any lattice point t ∈ Br\Br/2

|〈z|t〉|2 �
(

4C4 + 1

C1

)2

j0
3 exp(−α

√
rt) (39)

where rt = dist(t, Br/2).

Proof. We want to apply lemma 7 again (we refer to the appendix for subsequent notations).
We set A = Br/2, B = Br . The diagonalization of H1 yields normalized eigenstates a1, a2, . . .

belonging to A. We identify the interval a of lemma 7 with b, so that there are N eigenstates
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a1, . . . , aN in a and N = j+ − j− + 1 according to the Gerschgorin theorem. We also have
w1 = * + δ2/10, w2 = δ2.

Let us first estimate the delocalization of a1, . . . , aN in Br/2. We have

|〈s|ai〉| =
∣∣∣∣ 〈s|V |ai〉
Es − Eai

∣∣∣∣ � V0C1

|Es − Eai |
(40)

so that if s /∈ Cn0∑
1�i�N

|〈ai |s〉| � NV0C1

δ1
(41)

whereas if |s〉 = |n0 + jm〉 and j /∈ [j−, j+]∑
1�i�N

|〈ai |s〉| � NV0C1

En0,j − * − δ2/20
. (42)

We can now estimate the sum

I =
∑
y

∣∣∣∣ 〈x|W |y〉
E − Ey

∣∣∣∣ (43)

where x, y are eigenstates of H1 and E ∈ γ . Suppose first that x ∈ Br/2; in this case the sum
runs over lattice points v ∈ Br\Br/2. Defining C ′

n0
= Cn0 ∩ Br\Br/2 we obtain

I �
∑

v∈Br\Br/2

∑
s∈Br/2

∣∣∣∣ 〈v|W |s〉〈s|x〉
E − Ev

∣∣∣∣
� V0

δ1

∑
s

|〈s|x〉|
∑

v /∈C ′
n0

e−α|s−v| +
V0

δ2

∑
v∈C ′

n0

∑
s

e−α|s−v|

� V0

δ1
C1(r + 2)ν/2 + 2

V0

δ2
C3 <

1

10
+

1

5
(44)

where we have used the inequality

∑
s∈Br/2

|〈s|x〉| �
( ∑

s∈Br/2

1

)1/2

� (r + 2)ν/2. (45)

Suppose now that x = v ∈ Br\Br/2; in this case the sum runs over a1, a2, . . . and u ∈ Br\Br/2

I =
∑

u∈Br\Br/2

∣∣∣∣ 〈v|W |u〉
E − Eu

∣∣∣∣ +
∑

ai∈Cn0 ,i>N

+
∑

ai /∈Cn0

+
∑
i�N

∣∣∣∣ 〈v|W |ai〉
E − Eai

∣∣∣∣
= I0 + I1 + I2 + I3. (46)

Clearly I0 < 1
20 . By proposition 3, for any s ∈ Br/2∑
ai∈Cn0 ,i>N

|〈s|ai〉| � 6C2

C1
(47)

so that

I1 � 6C2
V0

δ2
<

1

10
. (48)

On the other hand

I2 � C1
V0

δ1
(r + 2)ν/2 <

1

10
(49)
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using an inequality similar to (45). It remains to estimate I3. Using (41), (42), we obtain

I3 � V0

δ2

∑
s∈Br/2

e−α|s−v| ∑
1�i�N

|〈ai |s〉|

� V0

δ2

(
C1

NV0C1

δ1
+ N3/2e−α(r/2−(j0+2)m)

)
(50)

+
V0

δ2

( ∑
−h�j<j−

+
∑

j+<j�h

NV0C1

En0,j − * − δ2/20
e−α(r/2−|j |m)

)
(51)

where h is the integer part of r/2m. The term (50) is smaller than 1
20 ; to estimate term (51),

consider for instance

NV0C1

∑
j+<j�h

e−α(r/2−jm)

En0,j − * − δ2/20
� NV0C1

∑
1�k�h−j+

e−αm(h−k−j+)

kδ2

= NV0C1

δ2

∑
0�t�h−j+−1

e−αmt

h − j+ − t

� N

20

(
2

h − j+
+ exp

(
−αm

h − j+

2

)) (
1 +

1

αm

)
. (52)

It can be verified, using (36), that this last expression is smaller than 1
2 , so that I3 < 1

20 + 1
20 = 1

10 .
We have thus proved that I < 1

2 ; lemma 7 can therefore be applied. To complete the proof, it
remains to observe that * < 10j0δ2. �

The results of this section can be restated as follows.

Theorem 5. Assume that the localization conditions are satisfied. Let |q〉 be an eigenstate of
Hr belonging to Cn0 ∩ Br/2; by this we mean

− δ2

20
� Eq � δ2

20
+ max(En0,h−1, En0,−h+1)

where h is the integer part of r/2m. Then |q〉 is a quasi-mode: for any lattice point n /∈ Br

|〈q|V |n〉| � V0
4C4 + C1 + 1

C1
C5 exp

(
−α

(√
r

8
+ dn

))
where dn = dist(n, Br).

Proof. By proposition 3 or 4, |q〉 is exponentially localized in Br/2. We can therefore apply
lemma 8 of the appendix. �

3.4. A complete determination of the perturbed spectrum

A particularly interesting situation arises when quasi-modes can be constructed around any
lattice point in a given energy interval e. In this case one might hope to obtain, with exponential
accuracy, the complete spectrum in the interval e; moreover, projectors over either single levels
or clusters of exponentially close levels might be expressed, with exponential accuracy, as sums
of projectors over quasi-modes. Since we have been able to construct quasi-modes in single
resonant gaps only, one has to assume that the energy interval e avoids all multiple resonant
gaps (intersection of two or more gaps with linearly independant resonant vectors); as we shall
see in a specific example (section 4.1), this is possible only if ν = 2 or 3.
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Consider an energy interval e = [e1, e2] (e1 > E0) and define

X = {s ∈ � : Es ∈ e}. (53)

Assume that one can construct disjoint balls Br1 , . . . , Brn of radius r1, . . . , rn so that

X ⊂ Br1 ∪ · · · ∪ Brn . (54)

We write Vri the restriction of V to Bri . We would like to obtain an accurate estimate of the
eigenstates and eigenvalues of H = H0 +V in a subinterval e′ = [e1 +w, e2 −w] by computing
a limited number of quasi-modes only, i.e. by diagonalizing Hr1,...,rn = H0 + Vr1 + · · · + Vrn .
To do so we need to demonstrate:

(1) that no eigenvalue of Hr1,...,rn outside of e can be shifted inside of e′ by W = V − (Vr1 +
· · · + Vrn)

(2) that each eigenstate of Hr1,...,rn belonging to e is a quasi-mode.

More precisely, for any eigenstate |x〉 of Hr1,...,rn , we define

6x(W) =
∑
y

|〈x|W |y〉| (55)

where the sum runs over the eigenstates of Hr1,...,rn . By the Gerschgorin theorem, to
demonstrate 1 it is enough to prove that

6x � w + dist(Ex, e) (56)

for any eigenstate x such thatEx /∈ e. Observe that this method opens the way for a perturbative
computation of the exact levels in the energy interval e′ (by treating W as a perturbation).

Before we carry out this program, we make the following assumption about H0: let n0

(En0 > E0) be the centre of a resonant chain with resonant vector m. Consider a ball Br

of centre n0 and radius r > 10m and define s± = n0 ± lm where l is the smallest integer
exceeding r/m. For any chain Cn of resonant vector m intersecting Br , we assume that

|n − s±| � 4r

5
. (57)

Roughly speaking, this assumption has the following geometrical meaning: the minimum
angle between m and the hypersurface m · ∂nE = 0 is greater than some constant. Notice
that it implies |n − n0| < 2r .

In the following theorem it is proved that, under appropriate circumstances, quasi-modes
yield a complete picture of the spectrum in the subinterval e′ = [e1 + w1 + w2, e2 −w1 −w2].
Some preliminary definitions are necessary:

R = min
s∈X

R̃(s) (58)

δ1 = min
s:dist(s,X)<R

δ̃1(s) (59)

V0 = max
s:dist(s,X)<R

Ṽ0(s) (60)

α = min(log 4, min
s:dist(s,X)<R

α̃(s)). (61)

In what remains of this section, the argument of C1, . . . , C5 always takes the above value of
α. We also assume that e2 − e1 < δ1. See section 4 for an application of this theorem in two
and three dimensions.

Theorem 6. Assume that there exists an integer j0 > J and a number r < R/4 such that the
following conditions are satisfied:



Robustness of perturbation series at high energies 5581

(1) For any resonant chain Cn intersecting X.

e2 − e1 <
κn(2r/5)

4
. (62)

(2) For any s ∈ X we can construct a ball of centre s and radius 6r intersecting at most one
maximal resonant gap.

(3) For any resonant chain Cn such that dist(Cn, X) < r/10

κn(r/10) > 8C1V0. (63)

(4) Define

r ′ = r

2(2j0 + 5)(2 + α−1 + α−2)
. (64)

For any centre n of a chain Cn ⊂ Gm such that dist(n, X) < 3r and m < r ′, we can
define δ2(n) = 5/21κn((j0 − 2)m) < δ1/2 so that j0, δ2(n), δ1, r satisfy the localization
conditions (34), (35) ((36) is automatically satisfied).

Then it is possible to construct disjoint balls Br1 , . . . , Brn (ri � r ′/4) with the property
dist(Bri , Brj ) > ri + rj , so that each eigenstate of Hr1,...,rn belonging to the energy interval e
is a quasi-mode. Moreover, for any eigenstate |x〉 not belonging to e

6x(W) � w1 + w2 + dist(Ex, e) (65)

where

w1 = V0(C1 + C5(5C4 + 1) + 12C2) (66)

and w2 decreases exponentially with r:

w2 = C4V0

∑
i

(2ri + 2)ν/2e−αri/4

+ max
i

(2ri + 2)ν/2C4V0

∑
j �=i

(2rj + 2)ν/2 exp
(
−α

2

(
d(i, j) − ri

2

))
(67)

(d(i, j) = dist(Bri , Brj )).

Proof. Let us first describe the construction of the Hamiltonian Hr1,...,rn . If s ∈ X and s is
robust, then the distance between s and any other point in X is greater than R; we therefore
construct a ball BR/4 of centre s and radius R/4 around any such point. If s is not robust,
then s belongs to some resonant chain Cn with resonant vector m (condition 2 insures that the
primitive vector m is unambiguously defined). Suppose first that m < r ′ and |s − n| > 2r/5;
by condition 1, the distance between s and any other point of X > 4r/5. We construct in this
case a ball Br/10 of centre s and radius r/10. If |s − n| < 2r/5 then we construct a ball Br of
centre n and radius r . Finally, if m � r ′, then we construct a ball Br ′/4 of centre s and radius
r ′/4. It is not difficult to convince oneself that the distance between any two balls is greater
than the sum of their radii.

Let us verify that any eigenstate of Hr1,...,rn belonging to e is a quasi-mode. Consider first a
ballBr/10 of centre s ∈ Cn; for any chainCn′ intersectingBr/10, we have |n′−(n±(r/m)m)| >
4r/5 so that dist(n′, Br/10) > r/10. Now by condition 3, κn′(r/10) > 8C1V0 so that the
minimum distance between levels in Br/10 > 8C1V0. Therefore theorem 1 can be applied and
the only eigenstate in the ball belonging to e is a quasi-mode. The same is true, of course,
in balls BR/4 and Br ′/4. Consider then a ball Br constructed around the centre of a resonant
chain; using condition 4 and theorem 5, we see again that eigenstates in e are quasi-modes.
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Consider now an eigenstate |x〉 of Hr1,...,rn such that Ex /∈ e. If |x〉 = |v〉 and if the
distance between v and any ball is greater than half the radius of the ball, then

6x(W) =
∑
y

|〈v|W |y〉|

� C1V0 +
n∑

i=1

∑
y∈Bri

∑
t

V0e−α|v−t||〈t|y〉|

� C1V0 + C4V0

n∑
i=1

(2ri + 2)ν/2e−αri/4

� w1 + w2. (68)

Suppose now that |x〉 either belongs to a ball Bri or |x〉 = |v〉 and dist(v, Bri ) < ri/2. For
each ball Bri , we define

Wri = V2ri − Vri (69)

where V2ri is the restriction of V to a ball B2ri of radius 2ri concentric with Bri . We have

6x(W) � 6x(W − Wri ) + 6x(Wri ) (70)

and

6x(W − Wri ) =
∑
y

|〈x|V − V2ri |y〉|

�
∑
j �=i

∑
y∈Brj

∑
v,t

V0e−α|v−t||〈x|v〉〈t|y〉| +
∑

t/∈B2ri

∑
v

V0e−α|v−t||〈x|v〉|

� (2ri + 2)ν/2C4V0

∑
j �=i

(2rj + 2)ν/2 exp
(
−α

2

(
d(i, j) − ri

2

))
+C4V0(2ri + 2)ν/2e−αri/4

� w2. (71)

It remains to prove that

6x(Wri ) < w1 + dist(Ex, e). (72)

To obtain accurate estimates, it is necessary to examine the localization properties of all the
eigenstates in a ball.

Consider first a ball Br constructed around the centre n0 of a resonant chain and denote
Hr as the restriction of H to Br . Recall that, for each chain Cn intersecting Br , |n−n0| < 2r;
using condition 4 and proposition 2, we can therefore define an energy interval bn for each
chain with the following properties: there are two gaps 2δ2(n) around bn in the spectrum of Hr

and bn contains at most 2j0 + 5 eigenvalues. Consider now an eigenstate |z〉 of Hr belonging
to an interval bn. We can use proposition 4 to demonstrate that |z〉 is exponentially localized
in a ball Br/2(n) of centre n and radius r/2. More precisely, for any t /∈ Br/2(n)

|〈z|t〉| � 4C4 + 1

C1
r2 exp

(
−α

√
rt

2

)
(73)

where rt = dist(t, Br/2(n)). Actually, we apply proposition 4 to the Hamiltonian H̃ = H̃0+Vr ,
where H̃0 is the restriction of H0 to the ball B3r (n) and Vr is the restriction of V to
Br(n0) ⊂ B3r (n) (proposition 4 remains valid if we replace Br by B3r , as long as B3r

intersects no other resonant gap than Ḡm; in our case this is true because, by hypothesis,
B3r (n) ⊂ B5r (n0)).
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If |z〉 belongs to Cn but not to bn then again, applying proposition 3 to the Hamiltonian
H̃

|〈z|t〉| �
√

7

C1

(
exp

(
−α

2

√
|t − s|

)
+ exp

(
−α

2

√
|t − s′|

))
(74)

where s, s′ ∈ Cn ∩Br(n0). A similar inequality holds when |z〉 is localized around one lattice
point only. Moreover, there is a bijection between such states (or pair of states) |z〉 and lattice
points (or pairs of points) s.

We have thus obtained bounds on the delocalization of eigenstates of Hr . We can now
compute 6x(Wr) for a ball Br constructed around the centre n0 of a resonant chain. Suppose
first that |x〉 ∈ Br (Ex /∈ e); if |x〉 /∈ Cn0 , then

6x(Wr) � C1V0(2r + 2)ν/2 � δ1

10
< dist(Ex, e). (75)

If |x〉 ∈ Cn0 and Ex /∈ bn0 we obtain, using (74)

6x(Wr) � 2
√

7C2V0 � w1 (76)

whereas if Ex ∈ bn0 , |x〉 is a quasi-mode and (73) yields the rough estimate

6x(Wr) � V0(5C4 + 1)C5 < w1. (77)

Suppose now that |x〉 = |s〉, where r < |s − n0| � 3r/2. In this case

6x(Wr) � C1V0 +
∑
y∈Br

∑
t∈Br

|〈t|y〉|V0e−α|s−t|. (78)

If s /∈ Cn0 then

6x(Wr) � C1V0 + C1V0(2r + 2)ν/2

� δ2(n0)

20
+

δ1

10
< dist (Ex, e) (79)

while if s ∈ Cn0 (and for instance (s − n0) · m > 0)

6x(Wr) � C1V0 +
∑
y,t

|〈t|y〉|V0e−α|s+−t|. (80)

Consider first y ∈ bn; since |s+ − n| > 4r/5 we obtain, using (73)∑
|s+−t|<r/5

+
∑

r/5�|s+−t|�2r

|〈t|y〉|V0e−α|s+−t|

� V0(4C4 + 1)r2 exp

(
−α

2

√
r

10

)
+ V0C4 exp

(
−αr

10

)
. (81)

On the other hand, each state (or pair of states) y which does not belong to an interval bn is
exponentially localized around one or two lattice points in Br , according to (74). Summing
over y and taking the maximal value with respect to r , we finally obtain

6x(Wr) � C1V0 + V0C5(5C4 + 1) + 12V0C2

� w1. (82)

It remains to estimate 6x(Wri ) for a ball BR/4, Br/10 or Br ′/4. In every case, the minimum
distance between levels in the ball is larger than 8C1V0, so that eigenstates of Hr1,...,rn are
exponentially localized around some lattice point in the ball (theorem 1). From this it is
readily deduced that

6x(Wri ) � V0C1 + 4V0C2 < w1 (83)

where either |x〉 ∈ Bri or |x〉 = |s〉 and 0 < dist(s, Bri ) < ri/2. This completes the proof of
the theorem. �
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4. Examples

4.1. Free particle on a Euclidean torus

The configuration space of this system is a ν-dimensional torus with Euclidean coordinates
0 � xi < Li , i = 1, . . . , ν. The integrable Hamiltonian H0 is simply the kinetic energy

H0 = p2

2m
= − h̄

2m

ν∑
i=1

∂2

∂x2
i

. (84)

This system is especially simple for several reasons. First of all, the semi-classical quantization
rules are exact and the actions

Ik = pkLk

2π
k = 1, . . . , ν (85)

simply take integer values multiplied by h̄. If we define the kth quantum number as

nk = L1pk

2πh̄
= L1

Lk

× integer (86)

and

e0 =
(

2πh̄

L1

√
2m

)2

(87)

then En = e0n
2 and the energy surface is simply a sphere in the lattice �. Moreover, if

L1 � Lk , k = 1, . . . , ν, then the norm of the shortest vector in the lattice and the volume of
the unit cell are >1.

In the following, we shall consider a perturbation V depending analytically on the
coordinates xi ; its matrix elements are then simply Fourier coefficients and the functions
Ṽ0, α̃ take constant values V0, α.

There are several possible definitions of resonant gaps; here we shall define δ̃1, R̃ so as
to avoid intersections of ν resonant gaps whose resonant vectors are linearly independant. We
set

R̃(n) = 1

4

(
2Cn

ν

)1/(1+ν)

(88)

δ̃1(n) = e0R̃(n) (89)

where C � 1. Now the resonant gap Gm is included in the set

gm = {n ∈ � : 4R̃(n) > m and |m̂ · n| < 2R̃(n) + 1} (90)

(where m̂ = m/m). To see this, suppose that n /∈ gm and 4R̃(n) > m; then
|En±m − En|/e0 � |2|n · m| − m2| � 2R̃(n), so that n /∈ Gm. We can therefore estimate
the fraction x of the energy surface occupied by resonant gaps: each set gm fills a volume
∼R̃nν−2 on the energy surface, so that

x � constant × R̃νR̃nν−2

nν−1
∼ C � 1 (91)

where the constant depends only on ν. Moreover, the intersection of ν gaps gm1 , . . . , gmν

whose resonant vectors are linearly independant is always empty. For if n ∈ gm1 ∩ · · · ∩ gmν
,

we can choose n̂ as an unit axis in the coordinate system and estimate the volume

|m1 × · · · × mν | � (m1, . . . , mν)
∑

1�j�ν

|mj · n̂|
mj

� ν(4R̃)ν
2R̃ + 1

n
� C � 1. (92)
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This is impossible, since the volume of the unit cell is >1. This result has a simple corollary:
if ν = 2, it is possible to choose C so that any ball of centre n and radius 2R̃(n) intersects at
most one resonant gap (cf condition 2 of theorem 6).

The function κn(x) defined in 2.2 is readily estimated, seeing that |n · m| < m2/2 for
any centre n of a chain with resonant vector m (because the set {u ∈ Rν : |u · m| < m2/2}
is a strip of width m)

2mxe0 � κn(x) � mxe0. (93)

Moreover, the curvature assumptions stated in 2.2 are verified. It is also easy to check that
condition (57) of 3.4 is satisfied.

We have seen that most lattice points are robust. By theorem 1, a KAM quasi-mode can
be constructed around any robust point of energy

E > constant × e0

(
C1V0

e0

)2(1+ν)

. (94)

Moreover, the ratio

ε(V0, α, R̃(n))/average distance between levels (95)

decreases exponentially with some power of the energy; thus most KAM quasi-modes represent
true eigenstates.

Quasi-modes can also be constructed in a single resonant gap Ḡm if we define, for a given
amplitude V0

j0 � 2 +
21

5

V0

e0
max(20C1, 10C3, 60C2) (96)

r = R̃2/ν

3(1 + 10C1V0/e0)2/ν
(97)

and if m < r ′, where

r ′ = r

2(2j0 + 5)(2 + α−1 + α−2)
. (98)

Localization conditions (34)–(36) are then satisfied; it remains to choose an energy sufficiently
large so that r ′ > m.

In two dimensions, theorem 6 can be applied at all sufficiently large energies: we choose
an interval e of width |e2 − e1| = e0r/10 and e1 large enough so that r > 80C1V0/e0 and
|w1 + w2| < (e2 − e1)/4. Quasi-modes thus provide a complete picture of the perturbed
spectrum beyond some energy threshold.

In higher dimensions it is impossible to approximate all eigenstates by quasi-modes,
because intersections of several resonant gaps become unavoidable. If ν = 3 however, it is
possible to confine double resonant gaps to a small fraction of the energy spectrum; in the
remaining parts of the spectrum theorem 6 can be applied. Let us explain this point in more
detail. Define

g′
m = {n ∈ � : 4R′(n) > m and |m̂ · n| < 2R′

1(n) + 1} (99)

where R′ � R̃1/8. As before, g′
m contains the gap G′

m defined by the function δ′
1 = e0R

′. If
s ∈ g′

m1
∩ g′

m2
, then there is a decomposition (not necessarily unique)

s = n + z1m1 + z2m2 (z1, z2 ∈ Z) (100)

with |n · mi | < m2
i /2, i = 1, 2. We call n a double centre and we select an unique double

centre for each sublattice generated by m1,m2. Moreover, if s′ ∈ g′
m1

∩ g′
m2

and s− s′ is not
a linear combination of m1, m2, then∣∣∣∣s · s − s′

|s − s′|
∣∣∣∣ > 2R̃(s) + 1. (101)
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To prove this, consider the set

K = {u ∈ R3 : |u · mi | < m2
i /2, i = 1, 2}. (102)

When projected on the plane (m1,m2), K is a parallepiped of area greater than m1m2.
Consequently, there always exists a pair of integers z1, z2, such that s−z1m1−z2m2 = n ∈ K .
On the other hand, if |s · (s− s′)|/|s− s′| < 2R̃ + 1, then s ∈ gs−s′ ∩ g′

m1
∩ g′

m2
so that s− s′

must be a linear combination of m1,m2.
Let s = n+z1m1 +z2m2 ∈ g′

m1
∩g′

m2
where n is a double centre; it is not difficult to see

that |s − n| � constant × R′/θ , where θ is the angle between m1 and m2. Now θ � 1/R′2

(consider the cell defined by the lattice vectors m1, m2 and v, where |v| ∼ 1; the volume of
this cell is smaller than vm1m2θ < R′2θ and is >1) so that

|s2 − n2| = |(s − n)2 + 2(s − n)n| � constant × R′2

θ2
� constant × R′6. (103)

We can now describe the contribution of a double resonant gap to the spectrum: to each
double centre n is associated a two-dimensional lattice generated by m1,m2 and included in
g′

m1
∩g′

m2
. The corresponding energy levels belong to an interval of width ∼e0R

′6 and there is

a gap 2δ̃1 between intervals corresponding to different double centres. Therefore, since there
are ∼R′2 double resonant gaps at a given energy, the fraction of the energy spectrum occupied
by them can be estimated as

e0R
′8

δ̃1

� 1. (104)

By choosing an energy interval e included in the complementary part of the spectrum, we
obtain a set X = {s : Es ∈ e} which is sufficiently separated from double resonant gaps. It
becomes therefore possible to satisfy condition 2 of theorem 6.

4.2. A particle in a class of two-dimensional separable potentials

The discussion of the next example will be of a more qualitative nature. Consider the separable
Hamiltonian (in appropriate units)

H =
ν∑

i=1

Hi =
ν∑

i=1

− ∂2

∂x2
i

+ xK
i (105)

where K is a positive, even integer. If we number ni = 0, 1, 2, . . . the energy levels Eni
of Hi ,

then to each eigenstate of H corresponds a vector n = (n1, . . . , nν) ⊂ N ν = �. In the limit
of large energies, the eigenfunctions of Hi can be approximated by WKB wavefunctions

=n(x) � Cn√
p(x)

sin

( ∫ x+

x

p dx +
π

4

)
(106)

where x± = ±E
1/K
n are the turning points and p(x) =

√
En − xK . The semi-classical energy

En is implicitely defined by the Bohr–Sommerfeld quantization rule∫ x+

x−
p dx = π

2
(2n + 1). (107)

The above expression of =n is only valid if p is real and p3 � KxK−1; it can be replaced
by an Airy function when x is close to one of the turning points (the domains of validity of
these two approximations overlap at sufficiently large energies). =n decreases exponentially
outside of the classically accessible region.
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The semi-classical energy En can be given a more explicit form∫ x+

x−
p dx = 2

∫ E
1/K
n

0

√
En − xK dx

= 2E1/2+1/K
n

K

∫ 1

0
t1/K−1

√
1 − t dt (108)

so that

En = AK(2n + 1)2X (109)

where AK depends only on K and X = K/(K + 2). The normalization constant Cn can be
estimated as follows: in the interval |x| < 10−1/Kx+ we have p/

√
En = 1 ± 0.1; in this

interval the semi-classical approximation is of course valid, namely the wavelength p−1 is
almost constant over distances equal to the wavelength itself, so that

1 =
∫

|=n|2 � 10−1/Kx+
C2

n√
En

. (110)

Consider now a smooth perturbation

V (x) =
∫

dk Vkeikx (111)

wherex = (x1, . . . , xν) and assume thatVk � V0 exp(−βk1/X). This requirement is somewhat
stronger than analycity; as we shall see however, it yields an exponential decrease of the matrix
elements of V . For the sake of simplicity, we shall also assume that V (x) is exponentially
localized in a finite region around the origin (for instance, V = exp(−x2)). The matrix
elements of V are then readily estimated: if ni,mi , i = 1, . . . , ν are large enough, then

|〈n|V |m〉| =
∣∣∣∣
∫ ∏

1�i�ν

dxi =ni
(xi)=

?
mi
(xi)V (x)

∣∣∣∣
�

∣∣∣∣
∫ ∏

1�i�ν

dxi dki
Cni

C?
mi

E
1/4
ni

E
1/4
mi

× sin(
√
Eni

xi + φni
) sin(

√
Emi

xi + φmi
)Vkeikixi

∣∣∣∣
� constant ×

( ∏
i

Eni
Emi

)−1/2K ∫
dk|Vk|

∏
i

∑
ε,ε′=±1

×δ(ki + ε
√
Eni

+ ε′√Emi
)

� constant ×
( ∏

i

Eni
Emi

)−1/2K

V0 exp

(
− β

∣∣∣∣ ∑
i

(√
Eni

− √
Emi

)2
∣∣∣∣
1/2X)

.

We would like to write

β

∣∣∣∣ ∑
i

(√
Eni

− √
Emi

)2
∣∣∣∣
1/2X

� β ′
∣∣∣∣ ∑

i

(nX
i − mX

i )
2

∣∣∣∣
1/2X

� α̃(n)|n − m|. (112)

Suppose that the index i is such that for k = 1, . . . , ν

|nX
i − mX

i | � |nX
k − mX

k | (113)

and similarly, j is such that

|nj − mj | � |nk − mk|. (114)
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Clearly, it is enough to find a function α̃(n) satisfying

|nX
i − mX

i |1/X � α̃(n)|nj − mj |
√
ν. (115)

The following notation will be convenient: we write f ∼ g if f , g are two functions such that
ag < f < bg, where a, b are two constants. Suppose now that 2n > m. In this case

|nX − mX| = nX−1

∣∣∣∣1 − (m/n)X

1 − m/n

∣∣∣∣ |n − m| ∼ nX−1|n − m|. (116)

On the other hand, if 2n < m

|nX − mX| = mX|1 − (n/m)X| ∼ mX ∼ mX−1|n − m| (117)

and similarly

|nX − mX|1/X ∼ m ∼ |n − m|. (118)

Thus if i = j we have proved that

|nX
i − mX

i |1/X � constant × n
(X−1)/X
j |nj − mj |. (119)

Using similar arguments for i �= j , we finally obtain

α̃(n) = constant × ( max
1�k�ν

nk)
−2/K. (120)

We can also define

Ṽ0(n) = constant × V0

( ∏
k

nk

)−1/(2+K)

(121)

so that

|〈n|V |m〉| � Ṽ0(n)e−α̃(n)|n−m| (122)

in accordance with our general definition of smooth perturbations.
It is obvious from these formulae that quasi-modes can easily be constructed when K is

large, since in this limit the system is very close to the example discussed in the preceding
section. We shall conclude our discussion by showing that KAM quasi-modes yield accurate
approximations of the exact eigenstates if K > 12 (in the two-dimensional case).

We shall henceforth consider the region n1 < n2. KAM quasi-modes are good
approximations only if

α̃(n)R̃1/2(n) ∼ n
−2/K
2 R̃1/2 (123)

grows as some power of the energy. We choose therefore

R̃(n) ∼ n
δ+4/K
2 (124)

where δ is some positive constant. On the other hand, the function δ̃1 must grow with the
energy. This is possible only if, for any robust state and any |m| < 4R̃, the linear term
m · ∂nE is dominant in the expansion

En+m − En = m · ∂nE + 1
2mt · ∂2

nE · m + · · · . (125)

Otherwise, the curvature of the energy surface determines the distribution of levels, which can
be very close to each other. Of course, |∂nE| itself must grow, which implies K > 2. Using
Taylor expansion (125) and restricting ourselves to the region n1 � 8R̃, we obtain

En+m − En = m · ∂nE + O(m2n2X−2
1 ). (126)

Therefore we can choose a constant C and define

gm = {n ∈ � : 4R̃(n) > m and |m · ∂nE| � 2Cn2X−2
1 R̃2(n)} (127)
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and

δ̃1(n) = C

2
n2X−2

1 R̃2(n) (128)

so that the resonant gap Gm is included in gm. Notice that δ̃1 grows as some power of the
energy, so that KAM quasi-modes can be constructed around robust states. It remains to prove
that a large fraction of states in � are robust. The intersection of gm with the energy surface
is a curve whose length is approximately given by

2ρ

m|∂nE|4δ̃1 ∼ R̃2

m
(129)

where ρ is the curvature of the energy surface. Consequently, the fraction of the energy surface
intersected by resonant gaps is bounded from above by

1

n2

∫ R̃

0

R̃2

m
m dm ∼ n

12/K−1+3δ
2 . (130)

This fraction is small if K > 12, and in this case most states are robust. The difficulties
encountered for K � 12 show how the construction of quasi-modes may fail in certain
situations.

5. Stochasticity in single resonant gaps

5.1. Weak stochasticity of the classical system

Quasi-modes in a single maximal gap Ḡm are obtained by diagonalizing the restriction Hr of
H = H0 + V to a ball Br of centre n0, where n0 is the centre of a resonant chain; as noted
previously, the eigenstates of Hr cannot be obtained by treating V as a perturbation (unless the
amplitude of V is smaller than the minimum distance between levels in the resonant chain).
This difficulty is not necessarily related to the appearance of stochastic trajectories around
classical resonant tori. If indeed chaotic zones fill only a very small fraction of the energy
surface, then the quantum system will not be seriously affected by this fine structure of phase
space; in this case the non-perturbative nature of quasi-modes can merely be related to the
formation of ‘islands’ of regular motion around the resonances.

Let us examine this question more closely in the case of a free particle on a two-dimensional
torus, submitted to a smooth perturbing potential V (x). We refer to the example discussed
in 4.1 for subsequent notations in this section. We choose L1 = L2 = L and we focus on a
resonance p1 = 0.

Consider a Poincaré surface of section

B = {(x,p) : x2 = 0, H(x,p) = H0 + V = E} (131)

(x1, p1) are natural coordinates on B and the Hamiltonian flow defines an area-preserving
map T : B → B. The invariant curves of the unperturbed system are simply p1 = constant.
When V �= 0, robust invariant curves are smoothly transformed into rotational KAM curves,
while a finite set of elliptic and hyperbolic fixed points appear instead of the resonant curve
p1 = 0. Around each elliptic point new KAM curves form (‘islands’); the region enclosed
between these islands and the rotational KAM curves closest to the resonance is called the
instability zone. This zone itself contains the stochastic layer, whose Lebesgue measure is yet
unknown. The stochastic behaviour of the classical system will presumably reflect on quantum
eigenstates if the volume ! filled by the instability zones between p2 and p2 + δp2 exceeds h̄2;
here δp2 = 2πh̄/L is the minimal uncertainty on p2 corresponding to a resonant chain C(0,n2)

with resonant vector m = (1, 0).
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Lazutkin [10] has obtained an estimate of the width Wk of the instability zone for the
standard map (around the main resonance)

Wk ∼ 1

k
exp(−π2/

√
k). (132)

The standard map is a one-parameter family of area-preserving maps Sk : (φ0, I0) → (φ, I )

defined by

φ = φ0 + I

I = I0 − k

2π
sin 2πφ0.

(133)

We can obtain a heuristic estimate of the volume ! by bringing the Poincaré map T :
(x1(0), p1(0)) → (x1(τ ), p1(τ )) into a form qualitatively similar to (133). The time τ is
approximately given by mL/p2 � L

√
m/2E; if we introduce the coordinates

φ = x1

L

I = p1τ

mL

(134)

then the map T becomes

φ = φ0 + I0 + · · ·
I = I0 − V0τ

2

mL2
f (φ0, I0) + · · · . (135)

Identifying k = V0τ
2/mL2 � V0/2E and returning to the variables (x,p), we obtain the

tentative estimate

! ∼ Wk × Lm

τ
× δp2 × L2 = Wkh̄L

√
mE. (136)

Introducing the quantum numbers n defined by (86), so that E = e0n
2, we can write the

condition ! > h̄2 as

n3e0

V0
exp

(
−π2n

√
e0

V0

)
> 1. (137)

The solutions n of this inequality lie approximately in an interval

C1

√
V0

e0
� n � C2

√
V0

e0
log

√
V0

e0
. (138)

In such a region the construction of quasi-modes is clearly impossible, sinceV0 ∼ e0n
2 is much

larger than the distance between levels in any ball in the lattice. These qualitative arguments
suggest therefore that the lattice of quantum numbers is completely obliterated by instability
zones filling a volume ∼h̄ν in phase space. The above estimate of the width of the instability
zone is of course quite debatable; nevertheless, our conclusion is consistent with the fact that
a new set of quantum numbers can be defined in single resonant gaps whenever quasi-modes
can be constructed (we shall return to this point in the next section). In this sense, quasi-modes
in single resonant gaps may be seen as resulting mainly from the quantization of islands of
stability.
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5.2. Irregularity of the quasi-modes

The considerations of the preceding section indicate that whenever quasi-modes can be
constructed in a single resonant gap, the corresponding classical system is only weakly
stochastic. It turns out indeed that quasi-modes can be computed perturbatively, starting from
a suitably chosen integrable Hamiltonian. However, as we shall see below, this is possible only
if the perturbation is not too strong; room is thus left for an interesting situation, in which quasi-
modes and quasi-energies still can be constructed, but escape from perturbative methods and
depend thereby in an intricate manner on the perturbing potential. This ‘irregular’ behaviour
may be thought of as a precursory mark of chaos.

In order to illustrate these remarks, we adopt an alternate point of view on resonances.
We decompose the perturbation V into a sum of two terms

V = Vtan + Vres (139)

where Vtan has non-zero matrix elements only in the direction tangent to m:

〈n|Vtan|n′〉 =
{

〈n|V |n′〉 if (n − n′)//m
0 otherwise.

(140)

The classical analogue of this decomposition is readily obtained if we interpret n as a vector
of quantized actions and 〈n|V |n′〉 as the Fourier coefficient

V cl
n′−n(n) (141)

in the series

V cl(I, θ) =
∑
k∈Zν

V cl
k (I)eik·θ . (142)

Here (I, θ) are action-angle variables in the phase space of the classical Hamiltonian H cl
0 (I).

We see that V cl
tan is a periodic function of m · θ. We can introduce new canonical coordinates

J, φ

J t = I tM−1 φ = Mθ (143)

where M is a matrix of determinant 1 such that M1i = mi . In these coordinates it is obvious
that the Hamiltonian H cl

tan = H cl
0 + V cl

tan is integrable, since it does not depend on φ2, . . . , φν .
However, all invariant tori of H cl

tan are not obtainable by a smooth deformation of those of H cl
0 ,

since the implicit solution J1(φ1) of

H cl
tan(φ1, J1, J2, . . . , Jν) = E (144)

(J2, . . . , Jν are constants of the motion) has singular points on the resonant torus m·∂IH
cl
0 = 0

(for V cl
tan infinitesimal). The islands of regular motion are obtained by a smooth deformation

of these newly created tori; the residual perturbation V cl
res is responsible for the appearance of

stochastic trajectories in the instability zones.
We can look for an equivalent picture in the quantum system. Instead of the observables

A2, . . . , Aν commuting with H0, we consider operators O2, . . . , Oν corresponding to the
classical actions I2, . . . , Iν

Oi = ni |n〉〈n|. (145)

Clearly [Oi,Oj ] = 0, [Oi,H0] = 0. It is then easy to construct operators P2, . . . , Pν

(corresponding to J2, . . . , Jν) which commute with Htan = H0 + Vtan. We define

Pj =
∑
k

M−1
kj Ok (146)
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and it is straightforward to verify that

〈n|[Pj , Vtan]|n′〉 = 0. (147)

Thus Htan is also integrable in the quantum mechanical sense. The corresponding space �tan

of quantum numbers can be constructed as follows: since Vtan can only mix states belonging to
the same resonant chain, there are ν − 1 quantum numbers (corresponding to the eigenvalues
of P2, . . . , Pν) determining the centre of each chain Cn0 and one quantum number labelling
the energies in a chain. This number differs essentially from (n − n0) · m (i.e. the coordinate
along the chain in �) when the states |n0 + jm〉, j ∈ Z, are strongly mixed by Vtan; this
occurs only in a region surrounding the centre n0, whose width depends on the amplitude of
Vtan. From an intuitive standpoint, this delocalization of eigenstates in the chain corresponds
to the existence of ‘bound states’ localized in the new tori created by Vtan along a resonance;
such ‘bound states’ can exist only if these islands are large enough.

If the amplitude of Vtan is large, then the matrix elements of Vres do not decrease
exponentially in �tan, but form instead an intricate function of the quantum numbers (for
low-lying states in the chain). One can expect that this irregularity of Vres will lead to quasi-
modes irregularily distributed along each resonant chain; similarly, energy levels will depend
on the perturbation in a complicated manner. However, this instability is greatly reduced by
the large gaps δ̃1 between resonant chains. It is therefore necessary to determine the amplitude
Ṽ0 of V for which Vres no longer can be treated as a perturbation.

As an example, we consider a particle on the Euclidean torus 0 � xi � L, i = 1, . . . , ν,
submitted to a Gaussian potential well V (x) of width ∼L/10 and depth ∼V0. We refer to
section 4.1 for notations and definitions. We select the resonant vector m = (1, 0, . . . , 0)
and we restrict our attention, for the remainder of this section, to a ball Br of centre n0 in the
single resonant gap Ḡm, n0 being the centre of a resonant chain. The potential Vtan(x1) is also
a Gaussian well of width ∼L/10 and depth ∼V0. To estimate the number N of ‘bound states’
localized in the x1-direction by the well Vtan, we use the semi-classical approximation

h̄N ∼
∫

class.traj.
p1 dx1 ∼ L

√
mV0 (148)

so that

N ∼
√

V0

e0
. (149)

We can give a qualitative picture of the eigenstates of Htan. They are labelled by quantum
numbers |n, i〉, where n is the centre of a resonant chain and i = 1, 2, . . . numbers the levels
in the chain; the first N levels correspond to states ‘delocalized’ in the unperturbed chain (i.e.
|n, i〉 is a superposition of several states |n + jm〉, j ∈ Z, when i � N ). The state |n, N〉
is delocalized on ∼10 sites in the lattice �, while |n, 1〉 is delocalized on ∼Q sites, where Q

can be estimated by developing Vtan(x1) around its minimum

Vtan(x1) ∼ V0

(x1

L

)2
. (150)

The ground state of the corresponding harmonic oscillator has an uncertainty *p1 ∼
(
√
mV0h̄/L)1/2 on the momentum so that

Q ∼ *p1

h̄L−1
∼

(
V0

e0

)1/4

. (151)

The spectrum of Htan has the following structure (recall that we consider only the subspace
spanned by the ball Br ): to each chain corresponds a cluster of levels, separated by a distance
∼e0 from each other (for low-lying levels), and there are gaps ∼δ̃1 around each cluster.
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The residual potential Vres cannot be treated perturbatively if the self-energy

S|n0,i〉(E) =
∑
r,s,...

〈n0, i|Vres|r〉 1

E − Er

〈r|Vres|s〉 . . . 〈t |Vres|n0, i〉 (152)

is divergent. The above sum runs over eigenstates r, s, . . . �= |n0, i〉 of Htan and the energy
E belongs to a contour surrounding the level E|n0,i〉. Observe that 〈x|Vres|y〉 �= 0 only if x, y
belong to distinct chains.

We seek a situation in which quasi-modes can be constructed but escape from perturbative
methods; we shall therefore keep only the most divergent contributions to the sum (152). They
come from paths repeatedly visiting the chain Cn0 :

S|n0,i〉 ∼ V0I1 + V0I1I2I1 + · · · + V0I1(I2I1)
n + · · · (153)

where I1, I2 are abbreviations for two different kinds of sums

I1 =
∑

n�=n0,j

〈n0, k|Vres|n, j〉
E − E|n,j〉

(154)

I2 =
∑
k

〈n, j |Vres|n0, k〉
E − E|n0,k〉

. (155)

Expanding |n0, k〉 and |n, j〉 in the original lattice �, we obtain the estimates

I1 ∼ V0

δ1

√
NQ I2 ∼ V0

e0

√
NQ (156)

whence, using (149) and (151), the criterion for divergence

δ1

V0
<

(
V0

e0

)1+3/4

. (157)

Now the construction of quasi-modes is possible if

δ1

V0
> rν/2 ∼ j

ν/2
0 ∼

(
δ2

e0

)ν/2

∼
(
V0

e0

)ν/2

(158)

(see localization conditions (34)–(36)). Conditions (157) and (158) are clearly compatible in
two and three dimensions, for large values of V0/e0.

6. Conclusion

When a perturbation shifts the energy levels by an amount much larger than the average
distance between levels, it is of course impossible to use perturbation theory in its usual form.
However, it might happen that eigenstates keep their identity before and after the crossing of
levels; in other words, these states are significantly coupled only when their energies are almost
degenerate. In an integrable system submitted to a smooth perturbation, most eigenstates have
this robustness property, which enables one to use perturbation theory well beyond its usual
validity range.

Our main tool in this paper has been the construction of ‘block Hamiltonians’, restricted
to some ball in the lattice of quantum numbers. The eigenstates of such operators, when
exponentially localized in a small subset of the ball, are accurate approximations of the true
eigenstates. In addition to KAM states, we have thus been able to find quasi-modes in single
resonant gaps. In some cases (mainly in two-dimensional systems), it is therefore possible to
obtain a precise picture of the perturbed system using quasi-modes only. The results presented
here show that such a spectrum is roughly made of two parts, superimposed on each other.
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One part is due to KAM quasi-modes and can be obtained by smoothly deforming the energy
surface and leaving the lattice of quantum numbers unchanged. The other part is due to
resonant quasi-modes and requires a separate study. Level repulsion should be manifest only
for exponentially close levels.

It should be emphasized that the above picture most likely concerns this part of the spectrum
which corresponds to weakly stochastic regions of phase space. The heuristic considerations of
section 5.1 suggest indeed that the lattice of quantum numbers is destroyed by instability zones
filling a volume in phase space larger than h̄ν . Stochasticity may nevertheless be announced
by irregular quasi-modes in resonant gaps, as argued in section 5.2.

The possibility of constructing quasi-modes at the intersection of several resonant gaps
is more difficult to establish; if one considers for instance resonant discs instead of resonant
chains (double resonance), the coupling between resonant discs induces further resonances
and the convergence of the perturbation series is hard to control. If such quasi-modes could
nevertheless be constructed, they would describe truly chaotic regions of the classical phase
space.
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Appendix. A localization lemma

Consider an integrable Hamiltonian H0 and a smooth perturbation V . Let A ⊂ B be two
subsets of the lattice of quantum numbers �, and assume that for all n ∈ B,n′ ∈ �

|〈n|V |n′〉| � V0e−α|n−n′| (159)

where exp(−α) � 1
4 . We write VA the restriction of V to A and H1 = (H0 + VA)B ,

H2 = (H0+V )B ,W = (V −VA)B the restrictions of the corresponding operators toB. We shall
consider H1 as the unperturbed Hamiltonian and determine the eigenstates of H2 = H1 +W by
treating W as a perturbation. Let a1, a2, . . . be the eigenstates of H1 belonging to the subspace
A. Notice that, for all n ∈ B\A

|〈ai |W |n〉| � C4V0 exp
(
−αrn

2

)
(160)

where rn = dist(A,n) and C4 = C4(α) (we shall omit in the following the argument α of the
functions C1, . . . , C5).

Assume that the statesa1, . . . , aN belong to a given energy intervala of widthw1, separated
by gaps 2w2 from all other levels of H1. The following lemma shows that, under appropriate
circumstances, the eigenstates of H2 belonging to a are exponentially localized in A.

Lemma 7. Assume that∑
y

∣∣∣∣ 〈x|W |y〉
E − Ey

∣∣∣∣ < 1

2
(161)

where x, y are eigenstates of H1. Here E belongs to a contour γ that surrounds the interval
a so that |E − Ey | � w2. Assume further that

V0C1

w2
� 1

4
. (162)
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Then if t ∈ B\A
1

2π i

∫
γ

dE〈t|(E − H2)
−1|t〉 � c exp

(−α
√
rt

)
(163)

where

c =
(
w1

w2
+ 1

) (
4C4 + 1

C1

)2 (
V0C1

w2

)2

4N

(
1 + 2V0C1

N

w2

)
. (164)

Proof. For any given pair r, s of eigenstates of H1, we define

Srs(E) = 〈r|W |s〉 +
∑

x,y,...,z �=t

〈r|W |x〉
E − Ex

〈x|W |y〉
E − Ey

· · · 〈z|W |s〉 (165)

where x, y, . . . , z are eigenstates of H1 and the sum runs over paths of all lengths in B. Let
6 = {a1, . . . , aN }; we define S6

rs(E) with the additional restriction that no path visits 6 (except
at terminal points). Our aim is to compute the self-energy Stt(E). We have

Stt = S6
tt +

∑
1�i�N

S6
tai

1

E − Eai

S6
ait

+
∑

1�i,j�N

S6
tai

1

E − Eai

Saiaj

1

E − Eaj

S6
aj t

. (166)

Let us estimate each term in this sum. If E ∈ γ it is straightforward, using (161), to obtain
the upper bounds

|Srs(E)| � 2V0C1 (167)

|S6
rs(E)| � 2V0C1. (168)

This last inequality also holds when E lies inside of the contour γ , because paths in S6
rs avoid

all states whose energy lies within γ . The following inequality will also be useful:

∑
s

∣∣∣∣δrs +
Srs

E − Es

∣∣∣∣ � 2 (169)

where δrs is the Kronecker symbol and E ∈ γ .
Consider now the decomposition

S6
ait

= S
6,m−
ait

+ S
6,m+
ait

(170)

where S
6,m−
ait

contains only paths which terminate with less than (m + 1) consecutive steps in
B\A. Each path in S

6,m+
ait

terminates therefore with at least (m + 1) consecutive steps in B\A.
A step in B\A has a natural length, defined as follows: the length of a step n → n′ is |n − n′|,
while the length of a step ai → n is rn. Now any path in S

6,m−
ait

contains at least one step in
B\A of length greater than rt/m. In other words, each term of the sum contains a factor

|〈x|W |s〉| � C4V0 exp
(
−αrt

2m

)
(171)

where s ∈ B\A. We can therefore write, using (169)

|S6,m−
ait

| �
∑
x,s

∣∣∣∣δaix +
Saix

E − Ex

∣∣∣∣ |〈x|W |s〉|
∣∣∣∣δst +

Sst

E − Es

∣∣∣∣
� 4C4V0 exp

(
−αrt

2m

)
. (172)
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Using (169) again, we also obtain

|S6,m+
ait

| �
∑
n1

∣∣∣∣∣ S6
ain1

E − En1

∣∣∣∣∣
∑

n2,...,nm

∣∣∣∣ 〈n1|W |n2〉
E − En2

∣∣∣∣ × · · · ×
∣∣∣∣ 〈nk−1|W |nk〉

E − Enk

〈nk|W |t〉
∣∣∣∣

� V0

( ′∑
n

∣∣∣∣ 〈n|W |n′〉
E − E′

n

∣∣∣∣
)m−1

� V0

(
V0C1

w2

)m−1

. (173)

Thus if we choose

√
rt � m �

√
rt

2
+ 1 (174)

(assuming rt � 2) we finally have

|S6
ait
(E)| � |S6,m−

ait
(E)| + |S6,m+

ait
(E)|

� V0(4C4 + 1) exp

(
−α

√
rt

2

)
. (175)

The same bound is of course valid for |S6
tai
(E)|.

We can now estimate the projection of |t〉 on the eigenstates of H2 surrounded by γ :∫
γ

dE〈t|(E − H2)
−1|t〉 =

∫
γ

dE

E − Et − Stt(E)

=
∫
γ

dE

E − Et − S6
tt

+
∫
γ

(Stt − S6
tt) dE

(E − Et − S6
tt)(E − Et − Stt)

. (176)

Consider the first integral of the sum. Inside the contour |E−Et| > w2, |S6
tt| � 2V0C1 < w2/2

and S6
tt is analytic. The integrand is therefore analytic and the integral vanishes. In the second

integral we have, according to (166)–(168)

|Stt − S6
tt| � N

w2
|S6

ait
|2 + 2V0C1

N2

w2
2

|S6
ait

|2 (177)

|(E − Et − S6
tt)(E − Et − Stt)| � w2

2

4
(178)

so that finally

1

2π i

∫
γ

dE〈t|(E − H2)
−1|t〉 � c exp

(−α
√
rt

)
(179)

where

c = w1 + w2

w2
3

4N

(
1 + 2V0C1

N

w2

)
V 2

0 (4C4 + 1)2. (180)

The lemma is proved. �

If A ⊂ Br/2 ⊂ Br = B, where Br/2 and Br are two concentric balls of radii r/2 and r

respectively, then the above lemma implies that the eigenstates of H2 belonging to the interval
a are quasi-modes. More generally, we have the following result.

Lemma 8. Consider two concentric balls Br/2 ⊂ Br ⊂ B, of radii r/2 and r respectively.
Let Hr be the restriction of H = H0 + V to Br and assume that |q〉 is an eigenstate of Hr
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exponentially localized in Br/2; in other words, there exists a constant C0 such that for any
t ∈ Br\Br/2

|〈q|t〉|2 � C0r
4 exp

(−α
√
rt

)
(181)

where rt = dist(t, Br/2). Then |q〉 is a quasi-mode: for all n /∈ Br

|〈q|V |n〉| � V0

(
1 +

√
C0

)
C5 exp

(
−α

(
dn +

√
r

8

))
(182)

where dn = dist(n, Br).

Proof. Let B3r/4 be a ball of radius 3r/4 concentric with Br . We can write

|〈q|V |n〉| �
∑

t∈B3r/4

+
∑

t∈Br\B3r/4

V0|〈q|t〉|e−α|t−n|

� V0(2r)
νe−α(dn+r/4) + V0(2r)

ν+2
√
C0e−α(dn+1/2

√
r/4). (183)

Using the inequality

xpe−x �
(p

e

)p
(x � 0) (184)

we obtain the result. �
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